
Preparatory Action for Security Research Activity Reporting in PASR-2005

PASR

Preparatory Action on the
enhancement of the European industrial
potential in the field of Security research

Grant Agreement no. SEC5-PR-104600

ROBIN

Open Robust Infrastructures

Project

Deliverable D.10

Implementation of ROBIN TCB Kit

Due date of deliverable: 31/04/2008
Actual submission date: 15/05/2008

Start date of Activity: 31/01/2006 Duration: 31/04/2008

Organisation name of lead beneficiary for this deliverable: Technische Universität Dresden

 Revision 1

CLASSIFICATION: Public

 15/05/2008

A guided walk through Bastei

Norman Feske, Björn Döbel

April 11, 2008

Contents

1 Introduction to Bastei’s development environment 2
1.1 Quick start to build Bastei for Linux . 2

1.1.1 Adding additional source-code repositories 3
1.1.2 Building during development . 3
1.1.3 Controlling the verbosity of the build process 3
1.1.4 Customizing your work flow . 4

1.2 Source tree directory layout . 4
1.3 Creating targets and libraries . 5

1.3.1 Target descriptions . 5
1.3.2 Library descriptions . 6
1.3.3 Specializations . 6
1.3.4 Using a secondary source-code repository for your developments 7

2 Exploring the provided demonstration setup 7
2.1 Bootstrapping the system . 7
2.2 The launchpad application starter . 9
2.3 Recursive system structure . 12
2.4 The flexibility of nested policies . 12

3 Creating your first Bastei application 13
3.1 Prerequisites . 13
3.2 Setting up the build environment . 14
3.3 Defining an interface . 14
3.4 Writing server code . 15

3.4.1 Implementing the server interface . 15
3.4.2 Getting ready to start . 17
3.4.3 Making it fly . 18

3.5 Writing client code . 19
3.5.1 A client object . 19
3.5.2 Client implementation . 20
3.5.3 Ready, set, go... 21

1

1 INTRODUCTION TO BASTEI’S DEVELOPMENT ENVIRONMENT

This guide is meant to provide you a painless start with the Bastei source tree,
with the default demonstration scenario, and with creating your first Bastei appli-
cation.

1 Introduction to Bastei’s development environment

1.1 Quick start to build Bastei for Linux

The best starting point for exploring Bastei is to run it on Linux. Make sure that your system
satisfies the following requirements:

• GNU Make version 3.81 or newer installed

• GNU gcc-4.* installed

• libSDL-dev installed

In the following, we assume that you downloaded, extracted, and entered the root directory
of the Bastei sources.

The Bastei build system never touches the source tree but generates object files, libraries,
and targets inside a build directory. We do not have a build directory yet. So let us create one:

1. Create a directory at the same level as the base/ directory:

mkdir build
cd build

2. Create a symbolic link for the Makefile that manages the build process:

ln -s ../tool/builddir/build.mk Makefile

Now let us build the targets by simply issuing

make

After the build process is successfully finished, you find the newly created binaries in the
bin/ subdirectory. By default however, you won’t find any exciting applications to play with.
The Bastei base system comes with only one real program called Core. Anyway, to see a
lifesign of Bastei, you may give Core a shot:

cd bin
./core

As indicated by the debug output, Core tries to spawn the Init process, which does not
exist yet.

2

1.1 Quick start to build Bastei for Linux

1.1.1 Adding additional source-code repositories

To keep the Bastei base system tidy and neat, the build system provides a way to implement
non-basic Bastei components outside the Bastei source tree by incorporating additional source
code repositories into the build process. Example of such additional source-code repository
are the os and demo repositories. The os repository contains device driver, fundamental ser-
vices, and the Init process. The demo repository supplements the os repository with some
components to graphically demonstrate the Bastei concepts. You can tell the build system to
incorporate these repositories into the build process by creating an etc/ subdirectory in your
build directory and adding a configuration file called etc/build.conf with the following en-
try:

REPOSITORIES = ../base ../os ../demo

If you now issue make again, you will see some additional targets such as init, nitpicker,
timer, and fb_sdl to be created.

When starting Core now, the debug output indicates that Core successfully spawns init,
which fails to access its configuration file. You can cancel the execution of Core by pressing
Control-C. As a starting point, you can use the configuration-file template supplied with the
os repository:

cp ../../os/config/linux_demo config

If you start Core again, you will get a more satisfying result. At least, you should see
something colorful popping up.

1.1.2 Building during development

When using multiple source-code repositories, the overall build process may revisit a lot of
targets and thus, give you some extra seconds to look bored on your screen. To improve
the workflow during development, the Bastei build system supports building subtrees of the
sources. For example, by issuing

make core server/nitpicker

The build system builds all targets found in the core and nitpicker source directories. As
indicated by the build output, the build system revisits each library that is used by the target.
This is very handy for developing libraries because instead of re-building your library and
then your library-using program, you just build your program and that’s it. This concept
even works recursively, which means that libraries may depend on other libraries.

In practice, you won’t ever need to build the whole tree but only the targets that you are
interested in.

1.1.3 Controlling the verbosity of the build process

If you are venturesome enough to try understanding the inner workings of the build system
in more detail, you can tell the build system to display each directory change by specifying

make VERBOSE_DIR=

3

1 INTRODUCTION TO BASTEI’S DEVELOPMENT ENVIRONMENT

If you are interested in the arguments that are passed to each invocation of make, you can
make them visible via

make VERBOSE_MK=

Furthermore, you can observe each single shell-command invocation by specifying

make VERBOSE=

Of course, you can combine these verboseness toggles for maximizing the noise.

1.1.4 Customizing your work flow

The etc/build.conf file in your build directory is not only useful for declaring the reposito-
ries to be included into the build process but it also enables you to customize your work flow.
For example, if you happen to specify VERBOSE= to the build process at a regular basis, you
can create a syntactical shortcut for this argument by adding the following snippet into your
etc/build.conf file:

ifeq ($(V),1)
VERBOSE =
endif

With this addition, you can use

make V=1

to achieve the same effect as by using

make VERBOSE=

During development, your may often restrict the build process to revisit only the tar-
gets that you are working on. For example, if only the targets within core, init, and
drivers/framebuffer are of interest to your work:

make core init drivers/framebuffer

As this list of targets grows, the manual specification of the targets becomes sufficiently
inconvenient. You can alternatively specify the these targets by overriding the MAKECMDGOALS

make variable in your etc/build.conf file:

MAKECMDGOALS = init core drivers/framebuffer

1.2 Source tree directory layout

The Bastei source tree has the following layout:

4

1.3 Creating targets and libraries

Directory Description
doc/ Documentation, specific for the repository
etc/ Default configuration of the build process
mk/ The build system
include/ Globally visible header files
src Source codes and target build descriptions
lib/mk/ Library build descriptions

1.3 Creating targets and libraries

1.3.1 Target descriptions

A good starting point is to look at the Init target. The source code of Init is located at
os/src/init/. In this directory, you will find a target description file named target.mk. This
file contains the building instructions and it usually is very simple. The build process is con-
trolled by defining the following variables. Additionally, a target.mk file may contain custom
make rules. For an example, take a look at demo/src/nitpicker/bastei/target.mk.

Build variables to be defined by you

TARGET is the name of the binary to be created. This is the only mandatory variable to be
defined in a target.mk file.

REQUIRES expresses the requirements that must be satisfied in order to build the target. You
find more details about the underlying mechanism in Section 1.3.3.

LIBS is the list of libraries that are used by the target.

SRC_CC contains the list of .cc source files. The default search location for source codes is the
directory, where the target.mk file resides.

SRC_C contains the list of .c source files.

SRC_S contains the list of assembly .s source files.

SRC_BIN contains binary data files to be linked to the target.

INC_DIR is the list of include search locations. Directories should always be appended by
using +=. Never use an assignment!

EXT_OBJECTS is a list of Bastei-external objects or libraries. This variable is mostly used for
interfacing Bastei with legacy software components.

Rarely used variables

CC_OPT contains additional compiler options to be used for .c as well as for .cc files.

CXX_OPT contains additional compiler options to be used for the C++ compiler only.

LD_OPT contains additional linker options.

5

1 INTRODUCTION TO BASTEI’S DEVELOPMENT ENVIRONMENT

Specifying search locations When specifying search locations for header files via the
INC_DIR variable or for source file via vpath, relative pathnames are illegal to use. Instead,
you can use the following variables to reference locations within the source-code repository,
where your target lives:

REP_DIR is the base directory of the current source-code repository. Normally, specifying lo-
cations relative to the base of the repository is never used by target.mk files but needed
by library descriptions.

PRG_DIR is the directory, where your target.mk file resides. This variable is always to be used
when specifying a relative path.

1.3.2 Library descriptions

In contrast to target descriptions that are scattered across the whole source tree, library de-
scriptions are located at the central place lib/mk. Each library corresponds to a <libname>.mk

file. The base of the description file is the name of the library. Therefore, there is no TARGET

variable to be set. The source code locations are expressed as $(REP_DIR)-relative vpath

commands.

1.3.3 Specializations

Building components for different platforms likely implicates portions of code that are tied to
certain aspects of the target platform. For example, a target platform may be characterized by

• A kernel API such as L4v2, Linux, L4.sec,

• A hardware architecture such as x86, ARM, Coldfire,

• A certain hardware facility such as a custom device, or even

• Other properties such as software license requirements.

All these attributes express a specialization of the build process. The Bastei build system
provides a generic mechanism to handle such specializations.

The programmer of a software component knows the properties on which his software relies
and thus, specifies these requirements in his build description file.

The user/customer/builder decides to build software for a specific platform and defines the
platform specifics via the SPECS variable per build directory in etc/specs.conf. The default
platform specification that you just used in Section 1.1 is located at base/etc/specs.conf.

Each <specname> in the SPECS variable instructs the build system to

• Include the make-rules of a corresponding base/mk/spec-<specname>.mk file. This en-
ables us to customize the build process for each platform. For example, the spec-linux.mk
file tells the build system to add Linux-specific include search directories and link the
POSIX thread library to the target.

• Search for <libname>.mk files in the lib/mk/<specname>/ subdirectory. This way,
we can provide alternative implementations of one and the same library interface for
different platforms.

6

Before a target or library gets built, the build system checks if the REQUIRES entries of the build
description file are satisfied by entries of the SPECS variable. The compilation is executed only
if each entry in the REQUIRES variable is present in the SPECS variable as supplied by the build
directory configuration.

1.3.4 Using a secondary source-code repository for your developments

A source-code repository is a directory tree with a layout that corresponds to the Bastei source
tree. The following directories are mandatory:

lib/mk/
src/
include/

2 Exploring the provided demonstration setup

This section provides a step-by-step guide through the demo scenario provided with Bastei.
The scenario highlights the following features:

• Creation and destruction of single processes as well as arbitrarily complex sub systems

• Trusted-path facility of the Nitpicker secure GUI

• Assignment of resource quotas to sub systems

• Multiple instantiation of services

• Usage of run-time adaptable policy for routing client requests to different services

2.1 Bootstrapping the system

The Bastei system is structured as a tree of processes with the Core process as the root of
the tree. Core provides the most fundamental services that are needed to start processes and
manage physical resources. These services are the following:

RAM is the memory manager. From this service, processes can obtain memory.

ROM is the file provider for files that are present at boot time. Depending on the platform,
these files are stored inside a ROM chip or loaded by a boot loader.

CPU is the thread manager, which enables processes to create, manage, and destroy threads.

TASK is a facility to create address spaces. Each Bastei process lives in a separate address
space (called task) that is by default completely isolated from all other processes except
from its parent process. You can think of a task as a virtual world in which the process
exists. At creation time, a task is completely empty and it is the job of the task’s parent
to define the layout and the content of the address space before starting the task’s first
thread.

7

2 EXPLORING THE PROVIDED DEMONSTRATION SETUP

RM is the manager for address-space layouts (called region map). A region map is used
by a parent to define the execution environment of a new child process at creation time.
During its lifetime, a process may also use its own region map to manipulate its address-
space layout directly.

CAP is a capability manager, which is used for establishing communication channels be-
tween processes.

In addition, Core provides the following services to user-level device drivers:

I/O is the input/output manager, which makes memory-mapped I/O registers and I/O ports
accessible to user-level device drivers.

IRQ is the interrupt manager. This service is used by user-level device drivers to handle
device interrupts.

The fundamental services described above are complemented by an additional service called
LOG that enables processes to print debug output.

Core only provides these services as raw mechanisms and it is completely free from policy.
That means there exist no means of boot-time configuration. You can think of Core as the
user-level portion of the underlying kernel. The only built-in policy of Core is starting the
Init process and transferring all physical resources such as all the available memory to Init.
In contrast to Core, Init is driven by policy. This policy defines the static bootstrapping of
further processes and it is expressed via XML syntax in Init’s config file. Init obtains this file
from Core’s ROM service as a ROM module. For the demo scenario, the config file looks as
follows:

<config>
<start>
<filename>fb_sdl</filename>
<ram_quota>2M</ram_quota>

</start>
<start>
<filename>timer</filename>
<ram_quota>0x10000</ram_quota>

</start>
<start>
<filename>nitpicker</filename>
<ram_quota>1M</ram_quota>

</start>
<start>
<filename>launchpad</filename>
<ram_quota>2G</ram_quota>

</start>
</config>

Init’s configuration is a list of processes to be started as children of Init, whereas the order
of the start entries determines the starting order of the processes. Each start entry can fur-
ther describe policy to be applied to the process. For the demo scenario, we have assigned
a different amount of memory via the ram_quota definition to each process. If the specified
value exceeds the available memory (see the launchpad entry), Init assigns all of the remain-
ing available memory to the process.

The processes started by this configuration are the following:

8

2.2 The launchpad application starter

Figure 1: Main window of the launchpad application starter.

Fb_sdl is a process that provides services for accessing the frame buffer and for requesting
user input. The interfaces for these services are platform independent but fb_sdl is a
Linux-specific implementation of these services that relies on libSDL.

Timer is a process that enables other processes to wait for a specified amount of time.

Nitpicker is a low-complexity GUI server that allows multiple graphical applications to share
the graphics device and user input in a secure fashion. More information about its
concept are provided by the following paper:

Norman Feske and Christian Helmuth: “A Nitpicker’s guide to a minimal-complexity
secure GUI”, In proceedings of the 21st Annual Computer Security Applications Conference
(ACSAC 2005), Tucson, Arizona, USA, December 2005.

http://os.inf.tu-dresden.de/papers_ps/feske-nitpicker.pdf

Launchpad is a graphical application for starting and killing further processes. This is the
program that you see right after starting the demo scenario and which is assigned all
remaining memory by Init.

2.2 The launchpad application starter

Figure 1 shows the main window of the launchpad application. It consists of three areas.
The upper area contains status information about launchpad itself. The available memory
quota is presented by a grey-colored bar. The middle area of the window contains the list
of available applications that can be started by clicking on the application’s name. Before
starting an application, the user can define the amount of memory quota to donate to the
new application by adjusting the red bar using the mouse. For a first test, you may set the
memory quota of the program named scout to 10MB and then click its name. In turn, the

9

2 EXPLORING THE PROVIDED DEMONSTRATION SETUP

Figure 2: Illustration of the system setup after having started the scout tutorial browser.

scout tutorial browser will be started and the lower area of launchpad becomes populated
the status information about launchpad’s children. Currently, launchpad has scout as its only
child. For each child, its name, its memory quota, and a kill button are presented. After
having started scout, you will further notice a change of launchpad’s own status information
as the memory quota spent for scout is not directly available to launchpad anymore.

Inside the scout window, you see an illustration of the current setup (figure 2). At the
very bottom, there are the kernel, Core, and Init. Init has started framebuffer, timer, input,
nitpicker, and launchpad as it children (note: on Linux, input and framebuffer are both con-
tained in the fb_sdl process). Launchpad has started scout as its only child. You can get a
further idea about the relationship between the applications visible on screen, by pressing the
ScrLk key, which gets especially handled by the nitpicker GUI server. We call this key the
X-ray key because it makes the identity of each window on screen visible to the user. Each
screen region gets labeled by its chain of parents and their grandparents respectively. For
example, the scout window is labeled by “Launchpad→ Scout”, which tells us that this pro-
gram was started by launchpad. During the walk through the demo scenario, you may press
the X-ray key at any time to make the parent-child relationships visible on screen.

By pressing the kill button of the scout child in launchpad’s window, scout will disappear
and launchpad regains its original memory quota. Although killing a process may sound like
a simple thing to do, it is worthwhile to mention that scout was using a number of services,
for example Core’s LOG service, the nitpicker GUI service, and the timer service. While using
these services, scout made portions of its own memory quota available to them. When scout
was killed by launchpad, all those relationships were gracefully reverted such that there is no
resource leakage.

10

2.3 Recursive system structure

Figure 3: A second instance of launchad is used to start the testnit program, which manages three
colored windows. The identity of each screen regions is unveiled by the X-ray mode of the
nitpicker GUI server.

11

2 EXPLORING THE PROVIDED DEMONSTRATION SETUP

2.3 Recursive system structure

Thanks to the recursive structure of Bastei, the mechanisms that function for a single appli-
cation are also applicable to whole sub systems. As a test, you may configure the launchpad
application entry within the launchpad window to 20MB and start another instance of launch-
pad. A new launchpad window will appear. Apart from the status information at the upper
part of its window, it looks completely identical to the first instance. With the new instance,
you may start further applications, for example by clicking on testnit. To distinguish the
different instances of the applications on screen, the X-ray key becomes handy again. Figure
3 shows a screenshot of the described setup in X-ray mode. Now, after creating a whole hi-
erarchy of applications, you can try killing the whole tree at once by clicking the kill button
of the launchpad entry in the original launchpad window. You will notice that whole sub
system gets properly destructed and the original system state is regained.

2.4 The flexibility of nested policies

Beside providing the ability to construct and destruct hierarchically structured sub systems,
the recursive system structure allows for an extremely flexible definition and management
of system policies that can be implanted into each parent. As an example, launchpad has a
simple built-in policy of how children are connected to services.

If a child requests a service, launchpad looks if such a service is provided by any of the
other children and, if so, a connection gets established. If the service is not offered by any
child, launchpad delegates the request to its parent. For example, a request for the LOG service
will always end up at Core, which implements the service by the means of terminal (or kernel
debug) output. By starting a child that offers the same service interface, however, we can
shadow Core’s LOG service by an alternative implementation. You can try this out by first
starting testnit and observing its log output at the terminal window. When started, testnit
tells us some status information. By further starting the program called nitlog, we create
a new LOG service as child of launchpad. On screen, this application appears just as a black
window that can be dragged to any screen position with the mouse. When now starting a new
instance of testnit, launchpad will resolve the request for the LOG service by establishing a
connection to nitlog instead of propagating the request to its parent. Consequently, we can
now observe the status output of the second testnit instance inside the nitlog window.

The same methodology can be applied to arbitrarily complex services. For example,
you can create a new instance of the framebuffer service by starting the liquid_fb appli-
cation. This application provides the framebuffer service and, in turn, it uses nitpicker to
get displayed on screen. Because any new requests for a framebuffer will now be served
by the liquid_fb application, we can start another instance of nitpicker. This instance uses
liquid_fb as its graphics back end and, in turn, provides the GUI service. Now, when starting
another instance of scout, the new scout window will appear within liquid_fb too (Figure
4).

The extremely simple example policy implemented in launchpad in combination with the
recursive system structure of Bastei already provide a wealth of flexibility without the need to
recompile or reconfigure any application. The policy implemented and enforced by a parent
may also deny services for its children or impose other restrictions. For example, the window
labels presented in X-ray mode are successively defined by all parents and grandparents that
mediate the request of an application to the GUI service. For example, the launchpad as the

12

Figure 4: Executing multiple instances of the nitpicker GUI server in a nested way.

parent of scout imposes its policy of labeling the GUI session with the label “Scout”. Init as
the parent of launchpad again overrides this label by the name of its immediate child from
which the GUI request comes from. Hence the label becomes “Launchpad→ Scout”.

3 Creating your first Bastei application

This section will give you a step-by-step introduction for writing your first little client-server
application using the Bastei OS Framework. We will create a server that provides two func-
tions to its clients and a client that uses these functions. The code samples in this section are
not necessarily complete. You can download the complete tutorial source code from the link
at the bottom of this page.

3.1 Prerequisites

We assume that you know how to write code and have read:

Norman Feske and Christian Helmuth: “Design of the Bastei OS Architecture”,
TU Dresden technical report TUD-FI06-07, Dresden, Germany, December 2006.

http://os.inf.tu-dresden.de/papers_ps/bastei_design.pdf

so that you have a basic understanding of what Bastei is and how things work. Of course,
you will also need to check out Bastei before going any further.

13

3 CREATING YOUR FIRST BASTEI APPLICATION

3.2 Setting up the build environment

The Bastei build system enables developers to create software in different repositories that
don’t need to interfer with the rest of the Bastei tree. We will do this for our example now. In
the Bastei root directory, we create the following subdirectory structure:

hello_tutorial
hello_tutorial/include
hello_tutorial/include/hello_session
hello_tutorial/src
hello_tutorial/src/hello
hello_tutorial/src/hello/server
hello_tutorial/src/hello/client

In the remaining document when referring to non-absolute directories, these are local to
hello_tutorial. Now we tell the Bastei build system, that there is a new repository. Therefore
we add the path to our new repository to build/etc/build.conf:

REPOSITORIES = ../base ../os ../hello_tutorial

Later we will place build description files into the tutorial subdirectories so that the build
system can figure out what is needed to build your applications. You can then build these
apps from the build directory using one of the following commands:

make hello
make hello/server
make hello/client

The first command builds both the client and the server whereas the latter two commands
build only the specific target respectively.

3.3 Defining an interface

In our example we are going to implement a server providing two functions:

void say_hello() makes the server print “Hello world.”

int add(int a, int b) adds two integers and returns the result.

The interface of a Bastei service is called a session. We will define it as a C++ class in
include/hello_session/hello_session.h

namespace Hello {

class Session
{
protected:

enum Opcode { SAY_HELLO = 23, ADD = 42 };

public:

virtual ~Session() { }

14

3.4 Writing server code

virtual void say_hello() = 0;
virtual int add(int a, int b) = 0;

};
}

As a good practice, we place the Hello Service into a dedicated namespace. The Hello::Session
class defines the public interface for our service as well as a protected enumeration defining
the opcodes for the RPCs we are going to implement.

3.4 Writing server code

Now let’s write a server providing the interface defined by Hello::Session.

3.4.1 Implementing the server interface

First of all, we are going to implement a server-side communication stub that dispatches
the Hello::Session interface and is derived from this abstract class as well as from the
Server_object class defined by the Bastei framework. Therefore, we need to include
hello_session.h and the base/server.h that includes the definition of Server_object. A
server object contains one important method:

dispatch(int opcode, Ipc_istream is, Ipc_ostream os)

This method is called whenever a client calls our server. From the opcode parameter it
can decide, which actions are to be performed. The second parameter, Ipc_istream is,
is a stream of input arguments, the third one is the stream to which output parameters
are written.

With this knowledge, we can implement our server-side Hello::Session_server class in
include/hello_session/server.h:

#include <hello_session/hello_session.h>
#include <base/server.h>

namespace Hello {

class Session_server : public Bastei::Server_object,
public Hello::Session

{
public:

Session_server() {
PDBG("Creating session component."); }

int dispatch(int op, Bastei::Ipc_istream is,
Bastei::Ipc_ostream os)

{
int a = 0;
int b = 0;

PDBG("dispatch op %d", op);

switch(op) {

15

3 CREATING YOUR FIRST BASTEI APPLICATION

case SAY_HELLO:
say_hello();
break;

case ADD:
is >> a;
is >> b;
PDBG("%d + %d ?", a, b);
os << add(a,b);
break;

default:
PWRN("Invalid opcode.");

}

return 0;
}

};
}

We learn some new things here:

• The dispatch method is basically a switch statement concerning the Opcodes we defined
in Hello::Session.

• For the ADD opcode we see how the server makes use of the Ipc_istream and Ipc_ostream

parameters. Before calling the add method, we read our parameters from the Ipc_istream.
Afterwards we write the result to the Ipc_ostream. Bastei’s IPC framework takes care of
marshalling and unmarshalling the messages passed between client and server. Note,
it is important that clients write their arguments to the IPC streams in the order the
server expects them to do so.

For a detailed discussion of the RPC framework and comparison to traditional approaches
refer to:

Norman Feske: “A Case Study on the Cost and Benefit of Dynamic RPC Mar-
shalling for Low-Level System Components”, SIGOPS OSR Special Issue on Secure
Small-Kernel Systems, 2007.

Now that we have created the server-side dispatch code, the only thing that is miss-
ing is the implementation of the actual functionality provided via the RPC interface. We
place the implementation of the virtual functions as declared in session interface into the
Session_component class derived from Session_server. By placing the implementation of
these functions into a separate component class, the implementation of the RPC interface
remains independent from the communication stub code such that one and the same RPC
interface (Session, Session_client, Session_server) could have multiple implementations.
Because the Session_component class is not part of the RPC interface but part of the server
implementation, we place this class into the file src/hello/server/component.h local to the
source code of the server implementation:

#include <hello_session/server.h>

16

3.4 Writing server code

namespace Hello {

class Session_component : public Hello::Session_server
{
void say_hello() {
PDBG("I am here... Hello."); }

int add(int a, int b) {
return a + b; }

};
}

3.4.2 Getting ready to start

The server object won’t help us much as long as we don’t use it in a server application. Start-
ing a service with Bastei works as follows:

• Open a CAP session to our parent, so that we are able to create capabilities.

• Create and announce a root capability to our parent.

• When a client requests our service, the parent invokes the root capability to create ses-
sion objects and session capabilities. These are then used by the client to communicate
with the server.

We did not yet define a root object, so we do it now in src/hello/server/main.cc. The
class Hello::Root_component derives from Bastei’s Root_component class. This class defines
a _create_session method which is called when a client wants to establish a connection to
the server. This function is responsible for parsing the parameter string the client hands over
to the server and create a Hello::Session_component object from these parameters.

#include <base/printf.h>
#include <root/component.h>
#include "component.h"

namespace Hello {

class Root_component : public Bastei::Root_component<Hello::Session_component>
{
protected:

Hello::Session_component *_create_session(const char *args)
{

PDBG("creating hello session.");
return new Hello::Session_component();

}

public:

Root_component(Bastei::Server_entrypoint *ep,
Bastei::Allocator *allocator)

: Bastei::Root_component<Hello::Session_component>(ep, allocator)
{

PDBG("Creating root component.");
}

};
}

17

3 CREATING YOUR FIRST BASTEI APPLICATION

Now we only need a main method that announces the service to our parent:

#include <base/env.h>
#include <base/sleep.h>
#include <cap_session/client.h>

using namespace Bastei;

int main(void)
{
/*
* Get a session for the parent’s capability service, so that we are able

* to create capabilities.

*/
Capability cap_session_cap = env()->parent()->session("CAP", "ram_quota=4K");
Cap_session_client csc(cap_session_cap);

/*
* A sliced heap is used for allocating session objects - thereby we can

* release objects separately.

*/
static Sliced_heap sliced_heap(env()->ram_session(), env()->rm_session());

/*
* Create objects for use by the framework.

*
* Msgbufs are used for sending and receiving messages using a

* Server_activation. A Server_entrypoint is created to announce

* our service’s root capability to our parent and manage incoming

* session creation requests.

*/
static Msgbuf<256> snd_msg, rcv_msg;
static Server_activation<4096> act(snd_msg, rcv_msg);
static Server_entrypoint entry(csc, act);

static Hello::Root_component hello_root(entry, sliced_heap);
env()->parent()->announce("Hello", entry.manage(hello_root));

/* We are done with this and only act upon client requests now. */
sleep_forever();

return 0;
}

3.4.3 Making it fly

In order to run our application, we need to perform two more steps:
Tell the Bastei build system that we want to build hello_server. Therefore we create a

target.mk file in src/hello/server:

TARGET = hello_server
REQUIRES = bastei
SRC_CC = main.cc
LIBS = cxx env server

To tell Init to start the new program, we have to add the following entry to Init’s config

file, which is located at build/bin/config.

18

3.5 Writing client code

<config>
<start>

<filename>hello_server</filename>
<ram_quota>256K</ram_quota>

</start>
</config>

Now rebuild hello/server, go to build/bin, run ./core, and get excited.

3.5 Writing client code

In the next part we are going to have a look at the client-side implementation. The most basic
steps here are:

• Get a capability for the Hello service from our parent.

• Create a Bastei::Ipc_client using this capability.

• Invoke RPCs through the Ipc_client.

3.5.1 A client object

We will encapsulate the Bastei IPC interface in a Hello::Client class for ease-of-use purposes.
This class derives from Hello:Session and implements a client-side object. Therefore edit
include/hello_session/client.h:

#include <hello_session/hello_session.h>
#include <base/ipc.h>
#include <base/printf.h>

namespace Hello {

class Client : public Hello::Session
{
protected:

Bastei::Capability _session_cap;
Bastei::Msgbuf<256> _sndbuf, _rcvbuf;
Bastei::Ipc_client _ipc_client;

public:

Client(Bastei::Capability cap)
: _session_cap(cap), _ipc_client(cap, _sndbuf, _rcvbuf) { }

~Client() { }

void say_hello()
{

PDBG("Saying Hello.");
_ipc_client << SAY_HELLO << Bastei::IPC_CALL;

}

int add(int a, int b)

19

3 CREATING YOUR FIRST BASTEI APPLICATION

{
int ret = 0;
_ipc_client << ADD << a << b << Bastei::IPC_CALL >> ret;
return ret;

}

void invalid_op()
{
PDBG("Calling server with invalid opcode.");
_ipc_client << 1234 << Bastei::IPC_CALL;

}
};

}

Things to note:

• A Hello::Client object is created using a Capability. From the given capability and
two static message buffers we create an Ipc_client object, that is used to perform our
IPC calls.

• An IPC client is a C++ stream to which we write our RPC. The first argument for an RPC
is always the opcode. It is followed by the parameters and finally by Bastei::IPC_CALL

if you want RPC semantics (which means to sleep until the RPC’s result is available).

• For demonstration purposes, there is another function in the Hello::Client class called
invalid_op. This function is used to show what happens if an invalid opcode is deliv-
ered to the server.

3.5.2 Client implementation

The client-side implementation using the Hello::Client object is pretty straightforward. We
request a capability for the Hello service from our parent. This call blocks as long as the
service has not been registered at the parent. Afterwards, we create a Hello::Client object
with it and invoke calls. In addition, we use the timer service that comes with Bastei. This
server enables us to sleep for a certain amount of milliseconds.

#include <base/env.h>
#include <base/printf.h>
#include <hello_session/client.h>
#include <timer_session/client.h>

using namespace Bastei;

int main(void)
{
Capability hello_session_cap =

env()->parent()->session("Hello", "foo, ram_quota=4K");
Capability timer_session_cap =

env()->parent()->session("Timer", "ram_quota=4K");

Timer::Session_client timer_client(timer_session_cap);
Hello::Client h(hello_session_cap);

while (1) {
h.say_hello();

20

3.5 Writing client code

timer_client.msleep(1000);

int foo = h.add(2,5);
PDBG("Added 2 + 5 = %d", foo);
timer_client.msleep(1000);

h.invalid_op();
timer_client.msleep(1000);

}

return 0;
}

3.5.3 Ready, set, go...

Add a target.mk file with the following content to src/hello/client/:

TARGET = hello_client
REQUIRES = bastei
SRC_CC = main.cc
LIBS = cxx env

Add the following entries to your config file:

<start>
<filename>timer</filename>
<ram_quota>256K</ram_quota>

</start>
<start>
<filename>hello_client</filename>
<ram_quota>256K</ram_quota>

</start>

Build drivers/timer, and hello/client, go to build/bin, and run ./core again. You have
now successfully implemented your first Bastei application.

21

	Introduction to Bastei's development environment
	Quick start to build Bastei for Linux
	Adding additional source-code repositories
	Building during development
	Controlling the verbosity of the build process
	Customizing your work flow

	Source tree directory layout
	Creating targets and libraries
	Target descriptions
	Library descriptions
	Specializations
	Using a secondary source-code repository for your developments

	Exploring the provided demonstration setup
	Bootstrapping the system
	The launchpad application starter
	Recursive system structure
	The flexibility of nested policies

	Creating your first Bastei application
	Prerequisites
	Setting up the build environment
	Defining an interface
	Writing server code
	Implementing the server interface
	Getting ready to start
	Making it fly

	Writing client code
	A client object
	Client implementation
	Ready, set, go...

